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Sand ripples under sea waves 
Part 3. Brick-pattern ripple formation 
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(Received 2 January 1991 and in revised form 6 August 1991) 

An oscillatory flow over a cohesionless bottom can produce regular three-dimensional 
bedforms known as brick-pattern ripples characterized by crests perpendicular to the 
direction of fluid oscillations joined by equally spaced bridges shifted by half a 
wavelength between adjacent sequences (a photo of brick-pattern ripples is shown in 
Sleath 1984, p. 141). In the present paper brick-pattern ripple formation is explained 
on the basis of a weakly nonlinear stability analysis of a flat cohesionless bottom 
subject to an oscillatory flow in which three-dimensional perturbations are 
considered. It is shown that brick-pattern ripples are generated by the simultaneous 
growth of two-dimensional and three-dimensional perturbations which interact with 
each other, according to a mechanism similar to that described by Craik (1971) in a 
different context, forming a resonant triad. A comparison between the present 
theoretical finding and experimental data by Sleath & Ellis (1978), concerning the 
region of existence of brick-pattern ripples in the parameter space and their 
geometrical characteristics, supports the validity of the present approach. 

1. Introduction 
Many recent experimental and theo:..f.ical works have been devoted to the study 

of the generation and development of bedforms underneath sea waves, because of the 
importance of this subject in connection with coastal sediment transport. 

A predictive theory of ripple formation based on a linear stability analysis of a flat 
cohesionless bottom subject to an oscillatory flow has recently been proposed by 
Blondeaux (1990). In  Blondeaux (1990) the conditions for damping or amplification 
of an infinitesimal two-dimensional bottom perturbation and the wavelength of its 
most unstable component are determined. In particular it is shown that for fixed 
values of the Reynolds number R, of the bottom boundary layer and of the Reynolds 
number R, of the sediments, a critical value of the sediment Froude number F ,  
exists below which every bottom perturbation decays and above which bottom 
perturbations with wavenumbers falling within a restricted range amplify. 

Here R,, R, and F, are defined using the amplitude U$ of the velocity oscillations 
close to the sea bed, the Stokes boundary-layer thickness S*( = (2u/o*) ;  where w* is 
the angular frequency of sea waves and v kinematic viscosity of water), the mean 
sediment grain size d*, the ratio s between sediment and water densities and the 
acceleration due to gravity g :  R, = U$S*/v; R, = q d * / u ;  F d  = U,*/[(s-l)gd*]i. 

Blondeaux (1990) predicts the appearance of two-dimensional ripples and their 
initial wavelength. However his analysis neglects nonlinear effects and cannot follow 
the temporal development of a finite-amplitude perturbation ; hence i t  cannot 
predict a possible equilibrium amplitude of two-dimensional perturbations and 
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discriminate between rolling-grain and vortex ripples. The characteristics of the 
different kinds of ripples are given in Allen (1984) and Sleath (1984). 

Nonlinear terms are taken into account in Vittori & Blondeaux (1990) where a 
weakly nonlinear stability analysis has been developed. The actual height and 
wavelength of two-dimensional ripples are predicted in a neighbourhood of the 
critical conditions in the absence of flow separation. Assuming that the latter occurs 
at the ripple crest when the ratio K between ripple height and wavelength is larger 
than 0.1, the analysis developed in Vittori & Blondeaux (1990) also allows one to 
determine the conditions for incipient formation of vortex ripples. 

All the studies performed so far assume the bed configuration and the flow field to 
be two-dimensional. As previously pointed out, experimental evidence exists that, 
under particular conditions, three-dimensional bedforms might appear. 

While the present work was in progress, an attempt to explain the appearance of 
three-dimensional bottom configurations underneath sea waves and in particular of 
brick-pattern ripples was published (Hara & Mei 1990). They examine the stability 
of the oscillatory flow over a fixed two-dimensional wavy wall with respect to three- 
dimensional perturbations. They find that three-dimensional perturbations of the 
flow field, which are subharmonic in the longitudinal direction with respect to the 
bottom waviness, may grow depending on the values of the relevant physical 
parameters. Considering the mean shear stress that these flow perturbations induce 
on the bottom, Hara & Mei (1990) argue that brick-pattern ripples may be generated, 
the sediment being driven by bottom stresses associated with flow perturbations. 
Our view differs from theirs : we feel that the mechanism leading to the formation of 
brick-pattern ripples arises from an instability of sediment motion which occurs 011 
space and time scales different from those characteristic of the flow instability 
mechanism described by Hara & Mei (1990). A comparison performed by Hara 
& Mei (1990) between their theoretical findings and the experimental data of 
Sleath & Ellis (1978) clearly shows that : (i) brick-pattern ripples were detected 
by Sleath & Ellis (1978) for values of the dimensionless parameter T (defined as 
T = 1/2a*U*:(6*Z*2w*2)-1, with a* and Z* ripple amplitude and longitudinal 
wavelength respectively) well below the critical value T, predicted by Hara & Mei 
(1990) for brick-pattern ripple formation. Indeed for the experimental conditions of 
Sleath & Ellis (1978) the value of T, predicted by the analysis of Hara & Mei (1990) 
is found to be 2.06 while the experimental values of T range between 1.02 and 1.83; 
(ii) the experimental values of transverse wavelengths of brick-pattern ripples are 
much longer than the values computed on the basis of Hara 8z Mei's (1990) theory. 
In fact for the experimental conditions of Sleath & Ellis (1978), Hara & Mei (1990) 
predict a transverse wavelength approximately equal to 8.56*, while the brick- 
pattern ripples observed by Sleath & Ellis (1978) are characterized by an average 
transverse wavelength approximately equal to 27.56*. However, even though in the 
literature sea and river bedforms are invariably found to be produced typically by 
the instability of sediment motion with the secondary flow of the fluid passively 
driven by the bottom perturbations (Fredsue 1974; Parker 1976; Richards 1980; 
Sumer & Bakioglu 1984; Blondeaux & Seminara 1985; Colombini, Seminara & 
Tubino 1987), values of the parameters may exist such that the length- and 
timescales characteristic of the flow instability mechanism described by Hara & Mei 
(1990) become comparable with those found by analysing the stability of the bottom 
and in this case the two mechanisms may interact. 

In the present work it is shown that the formation of brick-pattern ripples can be 
explained on the basis of a weakly nonlinear stability analysis of a flat cohesionless 
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bottom subject to an oscillatory flow in which three-dimensional perturbations of the 
bottom profile are considered. In  particular the present analysis shows that brick- 
pattern ripples are generated by the simultaneous growth of two-dimensional and 
three-dimension1 bottom perturbations which interact with each other with a 
mechanism similar to that described by Craik (1971) in a different context. 
Depending on the values of the parameters this nonlinear interaction leads to an 
energy transfer from the two-dimensional perturbations to the three-dimensional 
ones or vice versa and brick-pattern ripples may appear even when a linear stability 
analysis predicts the appearance of two-dimensional ripples or the growth of a purely 
three-dimensional bottom perturbation. A comparison between the present theor- 
etical findings and experimental data by Sleath & Ellis (1978) supports the validity 
of the present approach. 

The procedure used in the rest of the paper is the following : in the next section we 
investigate the time development of infinitesimal three-dimensional bottom 
perturbations of the sea bed under the action of surface gravity waves. In particular 
it is shown that three-dimensional bottom perturbations may be more unstable than 
two-dimensional ones. In  $3  the interaction of two-dimensional and three- 
dimensional perturbations of small but finite amplitude is considered within a 
neighbourhood of the critical conditions. In  particular the growth of three- 
dimensional and two-dimensional perturbations is investigated for values of the 
parameters of the perturbations such that they form a resonant triad (Craik 1971). 
It is shown that the simultaneous growth of two-dimensional and three-dimensional 
perturbations leads to a bottom configuration similar to that of brick-pattern ripples. 
Finally the relevance of the theory in explaining brick-pattern ripple formation is 
discussed. 

2. Three-dimensional bottom perturbation : linear analysis 
2.1. Formulation of the problem 

We follow Blondeaux (1990) and consider a two-dimensional gravity wave of small 
height H * ,  length L* and period T* in shallow water of depth D* propagating over 
an initially flat cohesionless bottom formed by sediment of uniform size d*, density 
ps and porosity n. Let us denote by p and v the density and kinematic viscosity of 
water respectively. 

It is well established that the flow can be modelled as irrotational except within 
the unsteady layer adjacent to the bottom. Since we are interested in the interaction 
between fluid and sediment, we focus our attention on that boundary layer and use 
linear wave theory to describe the motion outside this region. We define a Cartesian 
orthogonal coordinate system (x*, y*, z* )  with the x*-axis lying on the bottom and 
parallel to the direction of wave propagation and the y*-axis directed upward. 
Under the assumptions described in Blondeaux (1990), i.e. that the characteristic 
thickness of the bottom boundary layer is much smaller than both the water depth 
and the length of the gravity wave, we can assume the following form of the velocity 
vector v* = (u*, v*, w*) outside the bottom layer 

v* = (u*, w*, w*) = ( - tU;  eiWlt* + c.c., 0,O) (1) 

where t* is time, w* =2rc/T* is angular frequency of the sea wave, U; is the 
amplitude of the irrotational velocity oscillations evaluated at the bottom and C.C. 

denotes the complex conjugate of a complex number. 
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If the bottom is flat and d* is much smaller than the characteristic thickness of the 
bottom boundary layer 6*(=(2v/w*)i), the fluid motion is described by the well- 
known Stokes’ (1851) solution and the sediment moves to and fro. 

Let us now consider a bottom perturbation of the form 
y* = r*(x*, p ,  t * )  = € * ~ ( t * )  ei(a*s*+y*z*) + C.C. (2) 

with wavenumbers a* and y* in the x* and z* directions respectively and ‘small’ 
(strictly infinitesimal) amplitude e* C(t*) .  

The problem of flow and bottom development is posed by Navier-Stokes 
equations, flow and sediment continuity equations with appropriate boundary 
conditions, namely the boundary-layer flow must match the outer irrotational 
motion and no slip is reinforced a t  the bottom surface. 

Let us define the following dimensionless variables : 

(x, y, 2) = (2*, y*, z*)/cY*, t = t*w*,  € = €*/a*, ‘I = ?#?*/s*, 
(a, y )  = (a*, y*)  6*, v = (u, w, w) = (u*, w*, w*)/U,*, 

P = P*/P(U,*I2j 4 = k X 3  Qz) = q * / [ ( P s / P -  1) gd*31i, ) (3) 

where q* is the sediment flow rate which has components in the x-  and z-directions. 
The governing differential problem then reads 

v*u = 0, ( 5 )  

v - q  = --(1-n)-, 2Fd ar 
Rd at 

v=(u ,w ,w)=(O,O,O)  a t  y=r ,~(x , z , t ) ,  (7a) 

u =  (u,w,w)+(-$eit+c.c. ,O,O) for y+ co, (7b)  

where the parameters - flow Reynolds number R,, particle Reynolds number R,, 
particle Froude number F ,  and the ratio between sediment and fluid densities s - are 
defined 

In order to close the above formulation, we need a relationship between the sediment 
flow rate q* and flow properties. As discussed in Blondeaux (1990) this can be simply 
obtained by relating q* to the agitating forces which act on sediment grains. Here i t  
is necessary to  extend the relationship, taking into account that  the bottom 
configuration is three-dimensional. We pose 

where V is the velocity vector evaluated a t  a distance from the bed equal to #*. The 
constant p in (9) was introduced by F r e d s ~ e  (1978) in a different context. The values 
of a and b can be estimated in the relevant range of the parameters (i.e. for R, < Rd) 
by requiring that relationship (9) should match the empirical law proposed by Grass 
&, Ayoub (1982) in the two-dimensional case for small values of the grain size. A more 
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exhaustive discussion of (9) is presented in Blondeaux (1990) and in Vittori & 
Blondeaux (1990). The authors feel that (9) can be confidently used to study bottom 
development since it contains the main physical ingredients controlling the process 
of transport. However we point out that (9) can only be assumed appropriate within 
a linear context, but its extension to the weakly nonlinear case would involve 
complications which do not seem justified at  this stage given the uncertainty which 
is still present in the estimate of the coefficients a ,  b and p. 

2.2. Solution 
Since it is assumed that B be a quantity much smaller than one, the solution of the 
problem formulated above can be expanded in power series of B in the form 

(u , v ,w)  = (u,(y,t),O,O)+~C(t) (~1(~ , t ) ,v1(y , t ) ,w1(y , t ) )e i (~”+yZ)+c .c .+O(s2) ,  (10) 

p = po(y,t)+~C(t)pl(y,t)ei(a5+~z)+~.~.+O(~2), (11) 

(12) 

By substituting from (10) and (11) into (4)-(7) and equating like powers of 8, at O(EO) 
the Stokes problem is found and the solution for uo can be readily obtained. 

q = (qo(t) ,  0) +sC(t) (qzl( t ) ,  qzl(t)) ei(rxz+yZ) + C.C. + O(e2). 

The problem at O(s)  reads 

2 au, au i a2ul 

R, at aY R, aY 
-- + iau, u1 + 2 v l  = - iapl +- [y- ( a b y 2 )  ul], 

+1au0w1 = --+- L - ( a 2 + y 2 ) v 1  , 
R, at apl aY R, [a2. aY2 1 2 av, . 

2 awl . 
R, at R, aY2 

-- 

+iauowl = -iypl+- [as, 2- (a2+y2) wl], -- 

av 

aY 
iaul+’+iywl = 0, 

2F dC 
C(iaq,,+iyq,,) = -(i  - n ) L - ,  Rd dt 

(u1, v1, w1) + ( O , O , O )  for y+m.  (17) 

In  deriving the equations for ul, v1 and wl, the time derivative of C(t )  has been 
assumed to be much smaller than C ( t )  itself; thus the study of the flow field has 
been decoupled from that of bottom time development. The latter assumption, 
supported by experimental evidence, is formally justified assuming the quantity 
[ & ~ - * / ( l - n ) 2 F d ]  to be small and taking into account that the velocity V is 
proportional to Rb/2Ri with R, much smaller than R,. 

Introducing a coordinate system which moves with the fluid far from the bottom 
and after some manipulations involving much tedious algebra, it is possible to 
decouple flow equations (13)-(14) and to obtain an equation for the vertical 
component of velocity, which is similar to that found by Blondeaux (1990) for the 
stream function. The same analytical procedure of solution, which is essentially an 
extension of Seminara & Hall’s (1976) procedure developed in a different context, can 
then be used. 

2 FLM 239 
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FIQURE 1.  Marginal stability curves in an (a,Fd)-plane for different values of y and R, = 20, 
R, = 20 (8 = 2.65, p = 0.15). 

Once vl is known, the analytical integration of (13b) gives the pressure field while 
w1 can be determined by means of a procedure similar to that employed for vl. 
Finally u1 is provided by the continuity equation (14). 

For brevity we skip the details, which are given in Vittori (1992) where results 
concerning the oscillatory flow over a three-dimensional bottom configuration are 
extensively discussed. Here we focus our attention on bottom time development. 

Once the velocity field is known, one can easily solve for the bottom time 
development by substituting the transport rate formula into (15). It is easy to see 
that 

whence (19) 

As in the two-dimensional case, four contributions to C(t) can be identified. The 
first two contributions are related to the real and imaginary parts of the time average 
of the function g(t). The real part controls the amplification of the bottom 
perturbation, while the imaginary part gives the wave speed. The third and fourth 
contributions are related to the oscillatory part of g with a vanishing average. They 
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FIQURE 2. Marginal stability curves in an (a,F,)-plane for different values of y and R, = 10, 
R, = 30 ( 8  = 2.65, p = 0.15). 

describe the time variation of the perturbation profile around its average position 
during a wave cycle. 

2.3. Discussion of the results 
As previously pointed out, the growth or decay of three-dimensional bottom 
perturbations is related to the mean value of the real part of the function g ( t )  
appearing in (19), and, as discussed in Blondeaux (1990), two contributions to this 
mean value can be identified. The first is associated with the steady component of the 
fluid velocity evaluated at y* = @*, the second is due to the component of gravity 
along the bed profile. While the latter has a stabilizing effect, the former may be 
stabilizing or destabilizing depending on the values of a, y and R,, R,. 

For y = 0 the behaviour of two-dimensional bottom perturbations is recovered. A 
detailed discussion of the results can be found in Blondeaux (1990). As already 
mentioned in the Introduction, for fixed values of R, and R, there is a critical value 
(FJc of F,  below which every two-dimensional bottom perturbation decays and 
above which bottom perturbations with the longitudinal wavenumber a falling 
within a restricted range amplify. For non-vanishing values of y ,  the same 
qualitative behaviour is found even though some quantitative differences appear. 
Figures 1 and 2 show the marginal stability curves drawn for different y ,  for R, = 20, 
R, = 20 and for R, = 30, R, = 10 respectively. As shown in figure 2, values of R, and 
R, are found such that some three-dimensional bottom perturbations are more 
unstable than two-dimensional ones. 

2-2 
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The latter result seems in contradiction with experimental evidence. Indeed three- 
dimensional bed configurations described by (2) have never been observed, neither 
has a bottom topography given by 

+ C.C.] (20) y* = €*[Cl(t) ei(a*z*+y*z*) + c,(t) ei(a*z*-y*z*) 

been detected. Incidentally we point out that for fixed a, bottom perturbations 
characterized by transverse wavenumbers y and - y have the same amplification 
rate. 

This discrepancy between the theoretical results of the linear stability analysis and 
experimental evidence can be explained by taking into account nonlinear effects. In 
the next section we show that, within a neighbourhood of the critical conditions and 
for values of the relevant parameters such that three-dimensional components of the 
bottom perturbation are the most unstable, resonant triads exist which also lead to  
the explosive growth of a two-dimensional component with a wavenumber twice that 
of the three-dimensional components and an amplitude of the same order of 
magnitude as that  of the three-dimensional components. We show that this is the 
mechanism by which brick-pattern ripples appear. 

Brick-pattern ripples may also appear when two-dimensional components are 
more unstable than three-dimensional components. I n  this situation an energy 
transfer from two-dimensional perturbations to  the three-dimensional ones takes 
places which causes the explosive growth of three-dimensional components with a 
longitudinal wavelength twice that of two-dimensional components. 

3. Nonlinear interaction of two-dimensional and three-dimensional bottom 
perturbations : brick-pattern ripple formation 

3.1. Formulation of the problem 
The above discussion suggests that  nonlinear effects must be accounted for. Let us 
first consider values of the parameters (R8, Rd)  for which two-dimensional 
perturbations are the most unstable ones and let us assume that the actual value of 
F,  differs by a small amount from the critical value (Fd)cz characteristic of two- 
dimensional perturbations. Let us investigate whether in a neighbourhood of the 
critical conditions, nonlinear effects may lead to an energy transfer to three- 
dimensional components of bottom perturbations. The case in which three- 
dimensional perturbations are more unstable than two-dimensional ones will be 
considered in the following. 

As shown by Craik (1971), the interaction between two- and three-dimensional 
perturbations is particularly strong when three perturbations are considered : one 
two-dimensional and two three-dimensional. The longitudinal wavenumber of the 
three-dimensional components should be half of the two-dimensional component and 
the three-dimensional components should have opposite wavenumbers in the 
transverse direction. 

The above ideas suggest considering the following structure of a bottom 
perturbation : 

y = ~[A1(7)Cl(t)ei~z+Az(7)C,(t)ei(a5+~z)+A3(7)C3(t)ei(dL5-Yz)+~ . .  c ] 

+e2[B1(7)Dl(t) ei~"+BZ(7)D2(t) ei(u5+Yz)+B3(7)D3(t) ei(az-yz) + c  * .  c 

+terms proportional to ei2flz, ei(zaz+2yz) , . . .] + 0 ( € 3 ) ,  (21) 
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where E is a small parameter defined as 

F d  = (Fd)c2  + k Z E ,  Fd = ( p d ) m 3  + k 3 E *  (22) 

Moreover let /3 = ac2 and a = @, i.e. a = hC2. 
In (22) (Fd)m3 is the marginal value of the Froude number corresponding to a = &zc2 

and to the given value of y ,  ac2 being the critical wavenumber of the most unstable 
two-dimensional bottom perturbation. The results of the linear stability analysis 
show that for y of order one (FJrn3 is close to ( F d ) c 2  whence assumption (22) is 
reasonable. The time variable 7 defined as 

7 = Et (23) 

describes the 'slow ' growth (or decay) of bottom perturbations averaged over a wave 
cycle for conditions close to the marginal ones, while the amplitude functions C,, 
Di ( i  = 1,2 ,3)  describe the time development of perturbations during a wave cycle. 

The velocity field up to order e2 is then expanded in the form 

(u, ,v, w )  = (u,(y, t ) ,  0 , O )  

+@1(7) cl(t) (u11(y3 t ) ,  ~ 1 1 ( ~ ,  t ) ,  o)eisz 

+A2(7) c2(t) (uiz(y, t ) ,  "12(y, t ) ,  w12(y, t ) )  ei(uz+y2) 

+ A 3 ( 7 )  c 3 ( t )  (u13(y, t ) ,  v 1 3 ( Y ,  t ) ,  w13(y, t ) )  ei(uz-yz) + c*c.) 

+~~@1(7)Dl(t) ( ~ 2 1 ( ~ ,  t ) ,  v z l ( ~ ,  t ) ,  O)eiBz 

+B2(7)D&) (uZ2(y, t ) ,  vZ2(y, t ) ,  wZ2(y, t ) )  ei(orz+yz) 

+B3(7)D3(t)  (u23(y, t ) ,  2.'23(y, t ) ,  w23(y, t ) )  ei(uz-yz) + C.C. 

+terms proportional to ei2p2, ei(2uz+2yz) , . . .}. (24) 

Similar relationships hold for pressure p and sediment flow rate q.  
Substituting (24) into (4)-(7) and equating like powers of E ,  at order eo the Stokes 

problem is obtained. At  order E the solution can be found by following the procedure 
described in the previous section. Because of the assumptions (22)' bottom 
perturbations neither amplify nor decay a t  this order, hence the functions 
Ci(t) ( i  = 1 ,2 ,3 )  are given by the sum of a constant which, without loss of generality, 
can be assumed equal to one, and periodic functions of order aR2-b)/[2Fd( 1 -n)]  
with a vanishing time average. Moreover the functions A1(7) (i = 1,2 ,3)  are left 
unknown at this order of approximation and will be determined at higher order. 

obtain three problems for the following sets of unknowns : (uzl, vZ1, wz1,p21, qZlz, qZl2),  

We omit details of the problems a t  this order and of their solutions, since very long 
expressions are involved and knowledge of the flow field at this order is not needed 
to determine the function Ai(7) ( i  = l , 2 , 3 ) ,  i.e. the average growth or decay of 
bottom perturbations. We only point out that the flow and pressure fields uZ6, v2(, wPt, 
pZt can be split up into two parts (UZ, vkr, wig, pir) and (ugi, vit, wgi,pgt) ; the former 
satisfies a problem identical with that obtained for ulr, vll, wlg,plr and then it can be 
stated (uLf, &, w;lr,pi6) = (uli, vli, wit, pit), while the latter satisfies a non-homogenous 
problem. 

At  order 2, equating terms of the equations proportional to eiflz, ei(uz+yz), ei(Oz-Y2) 9 we 

(u22, '22, w 2 2 , P 2 2 ,  q 2 2 2 ,  !?222), (%3, ' 2 3 ,  w 2 3 , P 2 3 ,  q Z S Z ,  4 2 3 2 )  respectively' 
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Let us focus our attention instead on the sediment continuity equation, which 
along with the sediment transport rate formula, leads to the following relationships : 

where an overbar denotes the complex conjugate of a complex number and the 
expressions for a,, b, and Qr (i = 1,2,3) ,  are given in the appendix. In (25) for 
convenience the variable 7’ has been introduced : 

u J 2 - b  

(1 -n) 2Fd 
7’ = 7. 

Note that : (i) the bottom profile a t  O(s2) exhibits the same spatial structure as the 
profile derived a t  order E ;  (ii) because of the assumption (22) the average over a cycle 
of the quantities Q, (i = 1,2,3)  vanishes (see (18)); (iii) the values oft& and wii at 
y = Rd/2R, differ from the values of ugl and wil a t  the bottom by a small amount, 
since underneath gravity waves the size of sediment grains is usually much smaller 
than the boundary-layer thickness. The unknown values of u;, and wi* at y = Rd/2R, 
are then assumed to coincide with u;, and wi, evaluated a t  y = 0, neglecting terms 
of O(R,/M,);  (iv) the values of u;, and wit a t  y = 0 can be expressed in terms of ulf 
and wli by employing the bottom boundary conditions; (v) because of (iii)-(iv) the 
unknowns (ug,, w;,, wi,) do not appear in the coefficients of (25); (vi) from (it!), (25) 
and (22), i t  appears that the functions C, and D, (i = 1,2,3),  which describe the time 
variation of the perturbation profile during a wave cycle, are given by the sum of two 
terms: a constant, which can be assumed without loss of generality equal to one 
because of the presence of the functions A,, B, (i = 1,2,3),  and a periodic function of 
t of order [aR;-’/( 1 -n) 2Fd]. 

We then perform the average over a cycle of (25) and neglect terms of order 
(aRi-’/[(l -n) 2F,]) (it is worth remembering that on the basis of experimental 
evidence the quantity aR;-’/[( 1 -n) 2Fd] has been assumed to be smaller than 1 in 
$2.2 in order to decouple fluid flow from bottom time development). We finally 
obtain the following system of three ordinary differential equations for the amplitude 
functions A,(?) (i = 1,2 ,3) :  

where <a,), (b i )  (i = 1,2,3)  represent the time average of a,, b, (i = 1,2,3).  It appears 
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FIQURE 3. Time development of the amplitudes A, (i = 1,2,3) for R, = 30, R, = 50, F,  = 2.15, 
y = 0.14, 6 = 0.1 (8  = 2.65, ,u = 0.15). The initial value of the amplitudes is 1.0. 

that the values of (a,), ( b , )  (i = 1,2 ,3)  depend on the parameters R,, R,, F,, s and 
can be evaluated without solving for the velocity field at  order e2 (consider points iii 
and iv above). 

3.2. Discussion of the results 
The functions A, (i = 1,2 ,3)  exhibit a variety of behaviour depending on their initial 
values and on the values of the coefficients appearing in (27). However a solution of 
the system (27) in closed form is not known. Some analytical solutions are presented 
for particular values of (a,), ( b , )  (i = 1,2 ,3)  by Weiland & Wilhelmsson (1977), 
Craik (1985), and others by Smith & Stewart (1987). In  the present context the 
coefficients (a,), (b , )  (i = 1,2 ,3)  are real. Moreover in order to study the formation 
of brick-pattern ripples, the functions A, (i = 1 ,2 ,3 )  will be assumed to be real, thus 
avoiding the analysis of the solution of the system (27) in the complex plane. Finally 
it can be checked that because of the symmetry of the problem u12 = u13 and 
W12 = - W I 3 .  It follows 

(a,) = (a,), ( b , )  = @3). (28) 

Moreover it can be assumed that 
A ,  = -A3. 

The system (27) has been solved numerically using the RungeKutta method of 
fourth order. 

At this stage it is useful to recall that, for given values of R, and R,, the values of 
a, p, (Fd)c2 are fixed. As a consequence ( b , )  and ( b , )  vary only with y ,  but not with 
the actual value of F,. On the other hand (al> and (a2)  are proportional to 
F ,  - (Fd)c2 and F,  - (Fd)m3 respectively. 

For given R,, R,, F, and y two typical types of behaviour can be recognized, 
among others. 

First (see figure 3) only A,,  i.e. the two-dimensional bottom perturbation, tends to 
amplify and thus the theory predicts the appearance of two-dimensional ripples. As 
explained in Vittori & Blondeaux (1990) rolling-grain ripples or vortex ripples will 
appear depending on the values of the relevant parameters. 

Secondly (see figure 4) A ,  and A,, i.e. the three-dimensional components of the bed 
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FIQIJRE 4. Time development of the amplitudes Aj (i = 1,2 ,3)  for R, = 30, R, = 68. F,  = 2.25, 
y = 0.14, E = 0.1 (s = 2.65, ,u = 0.15). The initial value of the amplitudes is 1.0. 

FIQURE 5. Sketch of the bottom configuration predicted by the theory for brick-pattern ripples. 

perturbation, grow too giving rise to a bed configuration which is shown in figure 5 
and is characteristic of brick-pattern ripples. Incidentally it is worth pointing out 
that the behaviour of A, (i = 1,2,3)  shown in figures 3 and 4 is respectively computed 
for values of the parameters close to those of experiments number 76 and 49 in table 
1 of Sleath & Ellis (1978). As predicted by the present theory, in the former case 
Sleath & Ellis (1978) observed two-dimensional vortex ripples, while in the latter 
case the above authors detected brick-pattern ripples. Another example of the time 
development of the amplitude functions A, is shown in figure 6. In this case the 
values of the parameters are close to those of experiment number 250 in table 1 of 
Sleath & Ellis (1978). Even though the values R, and R, are smaller than those 
characteristic of experiment number 49, the behaviour of A ,  is similar to that shown 
in figure 4. However the growth of the three-dimensional components is driven by 
the growth of the two-dimensional one when it assumes values larger than those 
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FIQURE 6. Time development of the amplitudes A,  (i = 1,2,3) for R, = 20, R, = 55, F,  = 2.05. 
y = 0.1, e = 0.1 (s = 2.65, ,u = 0.15). The initial value of the amplitudes is 1.0. 

shown in figure 4. In both cases, the present results predict the appearance of brick- 
pattern ripples even though the Froude number is smaller than (Fd)m3, i.e. for values 
of F, such that a linear stability analysis would predict the damping of the three- 
dimensional components. Of course the appearance of brick-pattern ripples is also 
predicted for values of F,  larger than (Fd)m3. 

As previously pointed out, an analytical solution of the system (27) is known only 
for particular cases, hence we cannot provide a general criterion to predict the 
appearance of brick-pattern ripples, i.e. we cannot determine the range of values of 
R,, R, and F,  for which brick-pattern ripples are expected to appear. Even 
experiments based on the numerical integration of (27) do not allow precise 
quantitative conclusions to be reached, since for fixed values of R,, R,, F ,  and y the 
solution depends on the initial amplitudes of the various components of the bed 
perturbation. For example figure 7 shows the function A, for the same values of the 
parameters as in figure 4 but different initial values of A,, hereinafter referred to as 
Aio. In particular from figure 7(a) it can be appreciated that for A ,  = 0.5, the 
explosion of all the amplitudes A, takes place almost at the same time for each 
component and &I, lA31 reach an amplitude equal to 0.5 [All when the two- 
dimensional component has an amplitude of about 10. For A,, = 0.1 (see figure 7 b ) ,  
the explosive growth of the amplitudes of the perturbation is delayed. At the initial 
stage, after a short time interval, the three-dimensional components are much 
smaller than the two-dimensional one and IAJ, lA31 reach an amplitude of 0.5 JAII 
only when the latter is approximately equal to 20. Finally, for A,, = 0.02 (see figure 
7c)  the explosive growth of the two- and three-dimensional components is subject to 
a further delay and lAzl, IA,I are equal to 0.5 lAll only when the latter is extremely 
large. Since for the present approach to be rational the quantities di (i = 1,2,3) 
should be much smaller than 1, it follows that the appearance of brick-pattern ripples 
is rigorously predicted in a neighbourhood of the critical conditions, the size of which 
decreases as smaller values of A,, are considered. 

Let us assume that the initial amplitude of perturbations be not large, thus 
avoiding the possibility of a subcritical instability, i.e. the growth of pertubations in 
the region where a flat bed is stable as predicted by a linear stability analysis. The 
latter phenomenon may occur when the amplitudes A, (i = 1,2,3) are so large that 
nonlinear terms provide the necessary supply of energy to the perturbations. 
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FIQURE 7. Time development of the amplitudes A ,  (i = 1,2,3) for R, = 30, R, = 68, F ,  = 2.25, 
y = 0.14, B = 0.1 (s = 2.65, ,u = 0.15). The initial value of the amplitudes is (a) 0.5, ( b )  0.1, (c) 0.02. 

Let us start by considering the case R, = 40 and R, falling within the range (0,100) 
which are values of the dimensionless parameters of physical relevance ; here two- 
dimensional perturbations are always found to be more unstable than three- 
dimensional ones. 
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FIQURE 8. The coefficients {b,) and (b,)  plotted versus y for R, = 40, R, = 60, fi = 2a = 0.253 
(s = 2.65, p = 0.15). 

Look at the behaviour of bottom perturbations for values of the parameters falling 
in a neighbourhood of the critical conditions, i.e. considering values of F,  close to 
(F&2 and (Fd)m3, numerical experiments seem to indicate that the simultaneous 
growth of the two-dimensional and three-dimensional perturbations is present when 
(b,) and (b,) are both negative and either (a,) or (a,) is positive. 

Thus for given R, two alternatives arise which are discussed below. 
(i) In the first case (b,) and (b,) are never simultaneously negative whatever 

value of y is considered (see figure 8). In this situation brick-pattern ripples do not 
appear. If F, is smaller than (Fd)m3, (negative values of  k3) this result appears 
obvious since three-dimensional perturbations are then linearly stable. On the other 
hand it may be surprising that three-dimensional perturbations do not grow when Fd 
exceeds (Fd)m3 (positive values of k3) .  The decay of the three-dimensional components 
of the bottom perturbation is due to nonlinear terms which cause an energy transfer 
from the three-dimensional components to the two-dimensional one. 

(ii) In  the second case there is a range of y within which (b,) and (b,) are both 
negative (see figure 9). When F, is larger than (Fd)c2 but smaller than (Fd)m3 ( k ,  
positive and k, negative), a linear stability theory would predict the appearance of 
two-dimensional ripples. However, on the basis of the present work we can state that 
brick-pattern ripples will appear. The nonlinear terms now transfer energy from the 
two-dimensional component of the bottom perturbation to the three-dimensional 
ones. In this case the theory also gives the longitudinal and transverse wavenumbers 
of brick-pattern ripples. Indeed for fixed values of R, and Rd, one can look for the 



38 

1 2 x 

G .  Vittori and P .  Blondeaux 

FIGURE 9. The coefficients ( a , )  and (b,)  plotted versus y for R, = 40, R, = 80, /3 = 2a = 0.250 
(s = 2.65, p = 0.15). 

value of y which causes the fastest growth of three-dimensional components of the 
bed perturbation. The longitudinal wavenumber is fixed by the condition a = +c2. 

Brick-pattern ripples also appear when F, is larger than (F&, and (FJm3 (both k, 
and k, positive), while the flat bed is found to be stable when F, is smaller than (P,& 
and (Fd)m3 (both k, and k, negative). 

For R, = 40, the results described above (point i) are found for R, approximately 
smaller than 63, i.e. brick-pattern ripples cannot appear if the flow Reynolds number 
is smaller than the above value. On the other hand brick-pattern ripples can appear 
when R, exceeds 63 and F ,  is larger than (Fd)C2,  a range of y being always found 
within which (b,) and (b,)  are both negative. It is worth pointing out that in the 
range of y where the theory predicts the possible appearance of brick-pattern ripples, 
the value of the relative difference between of (Fd)m3 from (Fd)c2 is always less than 
0.1. 

On the basis of the present theory and making use of the results described in 
Blondeaux (1990) and Vittori & Blondeaux (1990), one could attempt to determine 
the regions of existence of flat-bed, rolling-grain ripples, two-dimensional vortex 
ripples and brick-pattern ripples in the parameter space. As pointed out previously, 
because of the strong dependence of the solution of the system (27) on the initial 
conditions, a precise quantitative definition of the range of validity of the theory is 
a difficult if not impossible task. Thus in obtaining the results described below, no 
limit is set on the growth of the different components of bottom perturbation. It 
follows that, depending on the initial amplitudes of the different components of the 
bottom perturbation, other nonlinear effects neglected in the present contribution 
(see for example Vittori & Blondeaux 1990) might turn out to be important and 
inhibit the growth of one component before the resonant explosion of all the 
components takes place. In this case brick-pattern ripples would not appear. Thus on 
the basis of the present theory the parameter space has been divided into a region 
where brick-pattern ripples might be present and a region where they cannot appear. 
However, as discussed previously, in the former region other bedforms might also 
appear depending on the amplitude of the initial perturbations. 
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FIGURE 10. Limiting curves dividing the (Rd, F,)-plane in regions where a flat bed, rolling-grain 
ripples, two-dimensional vortex ripples, brick-pattern ripples are expected to form (R, = 40, 
s = 2.65, p = 0.15). Also shown are experimental data by Sleath & Ellis (1978) and Horikawa & 
Watanabe (1968) for 35 < R, < 45 (0, rolling-grain ripples; 0 ,  two-dimensional vortex ripples; 
*, brick-pattern ripples). 

In  figure 10 the region of possible existence of brick-pattern ripples is plotted in the 
(Rap,)-plane for R, = 40 along with the regions where flat-bed, rolling-grain ripples 
or two-dimensional vortex ripples are the bedforms predicted by Blondeaux (1990) 
and Vittori & Blondeaux (1990). Looking at  figure 10 it is necessary to recall that the 
present approach, similarly to that described in Vittori & Blondeaux (1990), is valid 
only in a neighbourhood of the critical conditions. For this reason the boundary 
between rolling-grain ripples and two-dimensional vortex ripples and the boundary 
between two-dimensional vortex ripples and brick-pattern ripples are interrupted 
after a short distance from the curve dividing the flat-bed region from that of ripples 

In  order to substantiate the above results, we compare the present theoretical 
findings with the experimental data available in the literature. Unfortunately the 
amount of experimental data on brick-pattern ripples is extremely small ; indeed to 
the authors’ knowledge the only systematic results available in the literature are 
those obtained by Sleath & Ellis (1978). In  figure 10 the data by Horikawa & 
Watanabe (1968) on rolling-grain ripples and two-dimensional vortex ripples are also 
plotted. 

It can be seen that all brick-pattern ripples fall within the region predicted by the 
present theory or close to it. The agreement is also satisfactory considering that the 
theoretical curves are drawn for R, equal 40 while the experimental points are 
characterized by values of R, falling within the range (35,45). Moreover it should be 
noticed that for many experiments F, is not close to (Fd)cP and only a qualitative 
agreement should be expected. 

((Fd-(Fd)cP)/(Fd)cP less than Oe2). 
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FIGURE 11 .  Range of y within which brick-pattern ripples can appear, plotted versus R, for R, = 30 
and 40 (s = 2.65, p = 0.15). Experimental data by Sleath & Ellis (1978) are for 30 < R, < 40. For 
a description of the symbols see the text. 

Another comparison (figure 11) shows the transverse wavenumber measured by 
Sleath & Ellis (1978) along with the range of y in which the present theory predicts 
the possible appearance of brick-pattern ripples. In  this case also, the agreement is 
satisfactory taking into account that the theoretical curves, drawn for R, = 30 and 
40, do not depend on the actual value of F ,  but require that both (F,) - (Fd)CZ and 
( F d ) - ( F d ) m S  be much smaller than 1 .  On the other hand the experiments are 
characterized by values of R, falling within 30 and 40 but the values of F ,  are not 
always close to ( F d ) c 2  and (Fd)ma. Experiments where (Fd-  ( F d ) c z ) / ( F d ) c 2  < 0.1 are 
denoted by an open circle, those with 0.1 < (F,  - ( F d ) c z ) / ( F d ) c 2  < 0.2 by a solid circle 
and those characterized by ( F ,  - ( F d ) c 2 ) / ( F d ) c 2  > 0.2 by a black square. A comparison 
between the present theoretical findings and experimental measurements concerning 
the longitudinal wavenumber ,!3 of brick-pattern ripples leads to the conclusion that 
the present theory underestimates ripple wavelength with a relative error of about 
50%. The same quantitative error was found by Blondeaux (1990) in comparing the 
predicted and measured values of the wavelength of two-dimensional ripples when, 
as in the case of brick-pattern ripples measured by Sleath & Ellis (1978), the sediment 
Reynolds number is of the same order as the flow Reynolds number. 

For different values of R,, values of R, are found such that three-dimensional 
perturbations are more unstable than two-dimensional ones. I n  this case an analysis 
analogous to that previously described can be used to investigate the possibility of 
brick-pattern ripple appearance even though some assumptions should be slightly 
modified. 

Indeed it is always possible to assume /3 equal to  ac2, a equal to  iacz and a value 
of F, which fulfils conditions (22). Alternatively the analysis can be worked out 
considering a equal to  a,, (a,, stands for the longitudinal wavenumber characteristic 
of the most unstable three-dimensional perturbation) and ,!3 equal to 2ac3. I n  this 
case the transverse wavenumber y should be set equal to yc (yc stands for the 
transverse wavenumber characteristic of the most unstable three-dimensional 
perturbation). Furthermore we must set 

Fd = (Fd)m2+EkZI = ( F d ) c 3 + E k 3 ,  (30) 



Sand ripples under sea waves. Part 3 41 

20 40 60 
4 

FIGURE 12. Range of y within which brick-pattern ripples can appear, plotted versus R, for 
R, = 10 ( S  = 2.65, p = 0.15). 

where (Fd)c3 is the critical value of the Froude number characteristic of the most 
unstable three-dimensional perturbation and (F&2 is the marginal value of the 
Froude number characteristic of two-dimensional perturbations with longitudinal 
wavenumber equal to 201,~. 

Since it has been assumed, as suggested by the results of the linear stability 
analysis ($2), that the critical and marginal values of the Froude number do differ by 
a small amount, it would be also possible to consider different values of the 
longitudinal and transverse wavenumbers with the only restriction that a should be 
equal to $. However, in obtaining quantitative results, only the two limiting cases 
previously described have been considered and the one that causes the fastest growth 
of the two-dimensional and three-dimensional components of the bed perturbation 
has been chosen. 

Three-dimensional perturbations are found to be more unstable than two- 
dimensional ones when, for example, R, is equal 10. For such a value of the sediment 
Reynolds number, brick-pattern ripples may appear for flow Reynolds numbers 
larger than approximately 26. It is worth pointing out that in this situation brick- 
pattern ripples are always produced by the growth of a two-dimensional waviness 
which then transfers energy to the three-dimensional waves. It follows that B is equal 
to ac2 and a to h,,. In figure 12 the range of y for which brick-pattern ripples may 
appear is plotted versus R,. 

Experimental data by Sleath & Ellis (1978) characterized by R, falling close to 10 
are too few to draw significative comparisons between theoretical findings and 
experimental data. Moreover it is useful to point out that for such experiments the 
values of P, are far from the critical value (namely ( l i )d )c l )  for the appearance of 
ripples. Thus it turns out that in this case the theory can provide only qualitative 
results. Notwithstanding these limitations it appears that : (i) for the experimental 
values of the parameters, present theory predicts brick-pattern ripples as a possible 
bedform, (ii) the experimental transverse wavelengths of brick-pattern ripples fall 
within the range predicted by the theory (see table 1). 

Other experimentalists (Blondeaux, Sleath & Vittori 1988), found for R, equal to 10, 
R, larger than 26 and F, larger than (Fd) ,Z  but close to it, other equilibrium bedforms 
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Theoretical critical value of F ,  Theoretical 
for brick-pattern appearance Experimental range of y 

R@ R8 Fd (Rd = 10) value of y (R, = 10) 

13.2 46.8 2.61 1.82 0.082 (0.066,0.126) 
18.2 55.0 3.61 1.86 0.088 (0.065,0.14) 

TABLE 1 

(namely rolling-grain ripples). At first sight this would appear in contradiction with 
present theoretical findings. However, in the present theory no limitation is posed 011 
the growth of the amplitudes. As previously said, it might happen that other 
nonlinear effects inhibit the growth of the amplitudes and prevent the coupling 
between two-dimensional and three-dimensional bottom perturbations, thus avoid- 
ing the appearance of brick-pattern ripples. Indeed for R, = 10 the growth of the 
three-dimensional components of the bed perturbation is usually driven by the two- 
dimensional component only when the latter has a very large amplitude, which 
probably cannot be reached by the two-dimensional waviness close to the marginal 
conditions, because the effects described in Vittori & Blondeaux (1990) turn out to 
be important. 

Definitive results can then be gained only by means of a fully nonlinear analysis. 

4. Discussion 
The study of the time development of three-dimensional perturbations of a 

cohesionless bed subject to an oscillatory flow leads to an explanation of the 
mechanism of brick-pattern ripple formation : brick-pattern ripples arise because an 
energy transfer from the two-dimensional components of the bed perturbation to the 
three-dimensional ones or vice versa leads to the simultaneous growth of all the 
components and to  the appearance of the bottom profile characteristic of brick- 
pattern ripples. 

The present analysis is subject to  the same limitations as the analyses described in 
Blondeaux (1990) and Vittori & Blondeaux (1990). Such limitations derive from the 
assumptions of a viscous flow over a smooth bottom characterized by the presence 
of perturbations of small amplitude. It follows that the present analysis holds only 
for values of R, smaller than the critical value for transition to turbulence widely 
discussed in the literature, when the sediment size d* is much smaller than the 
boundary-layer thickness 6* and when the ripple amplitude is smaller than a critical 
value for which flow separation occurs (Sleath 1984). As discussed in Vittori & 
Blondeaux (1990) notwithstanding these limitations, the analyses provide results 
which can be used to  study ripple formation for values of the parameters of physical 
relevance. Indeed the above assumptions are usually fulfilled underneath gravity 
waves far from the breaker line when ripples are going to  appear. 

With respect to  the analyses of Blondeaux (1990) and Vittori & Blondeaux (1990), 
present findings are subject to a further limitation. Indeed, as previously pointed 
out, for the perturbation approach to be rational the quantities di (i = 1,2,3)  
should be smaller than 1 (strictly infinitesimal). This limitation simply implies that 
A, (i = 1,2,3)  should be smaller than e-l. It follows that when the solution of the 
system (27) leads to large values of the amplitude functions Ai,  the theory is strictly 
valid within a very small neighbourhood of the marginal stability conditions. As 
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FIGURE 13. Time developments of the amplitudes A,  ( i  = 1,2,3) for (a,) = ( b , )  = 0.1, 
( a z )  = 0.11, ( b , )  = 0.2. The initial value of the amplitudes is 0.0075. 

discussed in the previous section, because of the strong dependence of the solution of 
the system (27) on the initial conditions, precise quantitative definition of the 
validity regions of the theory in the parameter space is a difficult if not impossible 
task. 

The present work however does suggest a mechanism through which three- 
dimensional perturbations can grow simultaneously with two-dimensional ones, 
generating three-dimensional ripples and in particular brick-pattern ripples. The 
accurate prediction of the regions of existence in the parameter space of the different 
bedforms along with the determination of their characteristics poses a formidable 
problem which requires knowledge of the fully nonlinear separated flow and related 
sediment transport. 

Finally, it should be mentioned that in presenting the results, only a few values of 
the parameters have been considered. As previously pointed out, the extent of the 
parameter space and the length of the calculations have prevented a more complete 
investigation. It may happen that for different values of R,, R,, F, other behaviour 
of the amplitudes A, (i = 1,2,3) with respect to those presently discussed can be 
detected. For example in figure 13 the time development ofA,, A ,  and A ,  is presented 
for (a,)  = ( b , )  = 0.1, (a,) = 0.11 and ( b , )  = 0.2. The initial value of all the 
amplitudes is 0.0075. It can be seen that for long time only the two-dimensional 
component grows but there is a time range within which the three-dimensional 
components grow too. For different values of (a l )  and (bi), the temporary growth 
of A ,  and A ,  could be so strong that an interval may exist within which three- 
dimensional perturbations have much larger amplitudes than the two-dimensional 
one. In this case a transitory bedform should appear similar to that sketched in figure 
14. It is worthwhile pointing out that the authors, during the experiments described 
in Blondeaux et al. (1988), occasionally observed similar bottom configurations 
during transition from a stable bottom profile to another one. 

Other time developments of A, (i = 1,2,3)  may be present. A detailed qualitative 
description of the solutions of the system (27) is given in Weiland & Wilhelmsson 
(1977) and Craik (1985). However, a long experimental investigation is necessary in 
order to ascertain which of the possible solutions are true in the field. 
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FIGURE 14. Sketch of the bottom configuration predicted by the theory when the three- 
dimensional components prevail over the two-dimensional ones. 

Appendix 
The expressions for a,, b, and &, in (25)  are 
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(a2b+yz) ]  ( i  = 2,3).  

In  all the above expressions the functions of y are evaluated a t  y = Rd/2R,. 
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